Skip to main content
#
TCM Physicians Clinic

Artemisinina Antineoplásica 

La Artemisia Anua (Qing Hao, en chino) es una planta usada en Medicina Tradicional China para combatir la malaria, parásitos intestinales, enfermedades febriles, y tumores malignos. La Artemisinina es el ingrediente activo de la Artemisia Anua, y es la medicina más efectiva hasta ahora conocida contra la malaria. Estudios científicos demuestran que la artemisinina también es una potente arma contra el cáncer. La artemisina posee acción citotóxica selectiva contra las células de cáncer sobrecargadas de hierro (Las células de cáncer presentan más receptores de hierro y mayor contenido de hierro intracelular que las células normales). La artemisinina es un endoperoxida (agente con fuerte acción oxidativa) que tiene una gran afinidad por el hierro intracelular, y precisamente mediante ese mecanismo es que se aloja selectivamente en las células cancerosas y las destruye por reacción oxidativa.

La administración de la Artemisinina: La artemisinina comúnmente se administra vía oral, intramuscular o endovenosa. La absorción gastrointestinal de la artemisisnina oral disminuye considerablemente después de dos a tres días de administración continua. Por lo que la artemisinina oral es más apropiada para pacientes con malaria. El uso de la artemisinina para terapia antitumoral requiere una dosis mayor que la dosis que comúnmente se administra a pacientes con malaria. La dosificación de la artemisinina se realiza de acuerdo al peso corporal del paciente, y la vía de administración para pacientes con cáncer debe ser mediante infusión endovenosa o inyección intramuscular (algunos casos también han respondido bien a la artemisinina vía intratumoral o a una combinación intratumoral y sistémica).

La artemisinina posse una fuerte acción antitumoral y efectos secundarios muy minimos y facilmente manejables. Sin embargo, durante un tratamiento intensivo con artemisinina, el paciente debe estar bajo observación médica, preferiblemente en un hospital o centro médico apropiado. 

El Dr. Marcelo Lam es uno de los médicos con más conocimiento y experiencia en la administración de la artemisina en pacientes con cáncer. La artemisinina se puede administrar de forma exclusiva o en combinación con tratamientos convencionales. En China, la artemisinina está disponible en combinación con Gendicine y Oncorine (H101) (terapia genética antitumoral), crío-ablación, HIFU, hipertermia, y otros procedimientos. 

Nuestro programa internacional de oncología integrada cuenta con un equipo de eminentes médicos aliados en los Estados Unidos, China, y Republica Dominicana, que en un esfuerzo mancomunado provee excelencia en tratamientos integrados contra el cáncer.
 

 

Veaamos los siguientes reportes publicados en ingles sobre las investigaciones científicas de la Artemisinina contra el cáncer: 

Al final de esta pagina también hay una lista de "enlaces" que dirigen a otras publicaciones sobre la Artemisinina y su uso en la lucha contra el cáncer. 
Lista de Referencia:
CELL OF A HUMAN LEUKEMIA CELL LINE
In another study, researcher Dr Lai noted even more amazing results involving leukemia cells. He mentioned that the cancer cells were destroyed very quickly within a few hours when exposed to holotransferrin (which binds with transferring receptors to transport iron into cells) and dihydroartemisinin (a more water-soluble form of artemisinin). He further explained that it might be because of the high concentration of iron in the leukemia cells. (H.Lai and NP Singh, Selective Cancer Cell Cytoxicity from Exposure in Dihydroartemisinin and Holotransferrin, Cancer Letters, 91:41-46, 1995)     
55 CANCER CELL LINES
This amazing herb was also examined for its activity against 55 cancer cell lines. It was found to be the most active against leukemia and colon cancer and active against melanomas, breast cancer, prostate cancer, CNS and renal cancer. It was also reported that artemisinin's effectiveness was comparable with other standard drugs used to combat cancer. As such, these results and the low toxicity of artemisinin had made this herb to be a potential for cancer chemotherapy.      (Efferth et al, Anti-Malaria Drug is Also active against cancer, Int'l Journal of Oncology, 18;767-773,2001.)


BREAST CANCER CELLS
This herb becomes cytotoxic in the presence of ferrous iron. To accommodate a rate of iron intake greater than normal cells, cancer cells surfaces feature greater concentrations of transferrin receptors- cellular pathways that allow iron into a cell. In breast cancer cells, they have 5 to 15 times more transferrin receptors on their surface than normal breast cells. During a recent study, both breast cancer cells as well as normal cells were injected with artemisinin. The results showed that artemisinin effectively killed radiation-resistant breast cancer cells in vitro. However, the effects on the normal breast cells were minimal. This simply goes to show that this herb might be a simple, effective and economical treatment for cancer. (NP Singh and H Lai, Selective toxicity of dihydroartemisinin and holotransferrin toward human breast cancer cells. Life Sciences, 70:49-56,2001)


SMALL-CELL LUNG CARCINOMA CELLS (SCLC)
When artemisinin was tested on drug sensitive (H69) and multi-drug resistant (H69VP) SCLC cells which were actually injected with transferrin to raise the iron concentration levels, it was found that the cytotoxicity of artemisinin for H69VP cells was ten times lower than for H69 cells. This concluded that artemisinin was part of the drug resistance phenotype. This experiment also indicated that pretreatment of H69 did not lower the iron concentration for artemisinin whereas for H69 VP cells, the iron concentration was lowered to near drug sensitive levels. The researchers therefore concluded that artemisinin could be used together with transferin in drug resistance SCLC.     (Sadava, D et al, Transferrin overcomes drug resistance to artemisinin in human small cell lung carcinoma cells, Cancer Letter, 179,151-156, 2002)


ENHANCED EFFECTIVENESS OF CHEMOTHERAPY
Various studies carried out separately in Germany and Australia, revealed the activities of twenty drugs on leukemia CCRF-CEM cells lines, artemisinin, artesuante, balcalein, baicalin, barberine, bufalin, cantharidin, cephalotaxine, curcumin, daidzein, daidzin, diallyl, disulfide, ginsenoside, Rh2, glycirrhizic acid, isonardosinon, homoharringtonine, nardosinon, nardofuran, puerarin, quercetin, tannic acid and tetrahydronardosinon. The results showed that artesunate increased daunorabicin accumulation in CEM/E1000 cells. As artesunate and bufalin both have abilities to combat leukemia, whether it was applied alone or together with daunonrubicin in multi-resistant cells, these two drugs might be suitable for treating leukemia in the near future.      (Efferth et al, Blood Cells, Molecules, and Diseases 28(2) Mar/April; 160-168, 2002)


MODULATION OF MULTIDRUG RESISTANCE FOR CHEMOTHERAPY
Arteminisin could prevent the spread of cancer cells and increase cytotoxicity of perarubicin and doxorubicin in P-glycoprotein-overexpressing, and in MRP- overexpressing, but not in their corresponding drug sensitive cell lines.      (Reungpatthanaphong, P et al Modulation of MDR by Artemisinin, artesunate and DHA in K562, GLC4 Resistant cell lines, Biology Pharmocology Bull. 25(12) 1555-1561, 2002)


5 CANCER CELL LINES
When a triterpene and a sesquiterpene were isolated from separation of artemisia stolonifera, both of them proved to be able to destroy cancer cells in non-small cell lung adenocarcinorma, ovarian cancer, skin melanoma, CNS and colon cancer.   (Kwon, Phytochemical constituents of Artemisia stolonifera, Arch.Pharm, Research 24(4):312-315,2001)


ANTI-TUMOR EFFECT
When artemisinin's derivative, 9 C-10 was prepared as dimers using novel chemistry, it proved to be able to kill malaria cells. Additionally, dimers 8, 10 and 12 were especially powerful and prevented cancer growth in the NCI in vitro 60 cell line assay.   (Posner, GH et al, Antimalarial, antiproliferative and antitumor activities of Artemisin Derived Dimers, J Medicinal Chemistry, 42(21), 178-181, Oct 1999)


LEUKEMIA AND NON SMALL-CELL LUNG CARCINOMA CELL LINES
Researchers discovered a novel class of compounds that could destroy cancer cells after modifying artemisinin in one of the experiments conducted recently. This new derivative contained cyano and aryl groups and was very effective in destroying leukemia and human lung carcinoma cells.   (Li, Ying, et al, Novel antitumor artemisinin derivatives targeting G1 phase of the cell cycle, Bioorganic and Medicinal chemistry letters 11:5-8, 2001)


TUMOR CELLS
Some artemisinin related endoperoxides that were tested on their abilities to destroy Ehrlich ascites tumor cells (EAT) were proven positive. Surprisingly, its derivatives were even more powerful at destroying cancer cells. This test also confirmed artemisinin and its derivaties abilities to kill EAT cells at higher concentration than those needed for in vitro anti-malaria activities.   (Woerdenbag, HJ et al. Cytotoxicity of artemisinin-related endoperoxides to EATcells, J Natural Products 56(6), 849-856, 1993)


BLOOD-BRAIN BARRIER & ALZELMER'S DISEASE (AD)
Although artemisinin could not be dissolved in water, it was able to cross the blood brain barrier. It might therefore be useful for curing brain tumors and other brain diseases.

During a recent experiment, an alkaloid of artemisia asiatica was metabolized to small molecules in the digestive tract and was passed through the blood brain barrier. The results showed that it could act as an acetylcholinesterase inhibitor with a blocker of neuroloxicity induced by a beta in human beings that caused AD.   (Heo et al, Inhibitory effects of Artemesia alkaloids on acetylcholine sterase activity from PC12 cells, molecule cells, Jun 30:10(3):253-262)

Clinical Trials Using Artemisinin:   


HUMAN LARYNX CANCER TREATMENT
In this case, the patient was given artesunate injections and tablets over a period of nine months. His tumor was significantly reduced by about 70 percent just after two months of treatment. The patient also reported that he benefited much from this treatment. It actually prolonged his life and improved his quality of life. Once again, artemisinin had proven its amazing properties in killing cancer cells.  (Singh and Verma, Case report of a laryngeal squamous cell carcinoma treated with artesunate, Archive of Oncology, Vol 10(4), 279-80, 2002)


TOXICITY OF ARTEMISININ  -  STUDY ON LARGE ANIMALS
Investigating if high doses of artemisinin could produce neurotixicity such as ding gait disturbances, loss of spinal and pain response, respiratory depression and ultimately cardiopulmonary arrest in large animals.

When artemisinin was given to monkey at 292 mg/kg over 1 to 3 months, they showed no toxicity.   (Journal of Traditional Chinese Medicine 2(1) : 31-36, 1982) 


HEALTHY VOLUNTEERS
In pharmacokinetic studies, 250 mg tablets of artemisin and artesunate tablets were used. Both forms of tablets were well tolerated and there were no negative side effects.    (Benakis et al. Pharmacokinetics of artemisinin and artesunate after oral administration in healthy volunteers. American Journal of Tropical Medicine Hyg, Jan;56(1): 17-23, 1997)


PHARMACOKINETICS
During a study, healthy volunteers were given 250 mg of tablets of artemisinin and artesunate orally. Thee researchers reported that in the case of Artemisinin, the mean maximun drug concentration C= 0.36 microgram/ml, appearance half life T-0.62 hr,  distribution hal life t(12) a= 2.61 hr, decline half life t(12) = 4.34 hr, total area under concentration curve (AUC) =1.10 microgram hg/ml its main metabolite, dihydroartemisinin was measured in plasma.  On the other hand, half lives were more shorter in the case of artesunate (a syntetic form of the drug). (Benakis, et al, Dept of Pharmacology, Geneva U Swiss, Am J Trop Med Hyg, Jan; 56(1): 17-23, 1997.   

TCM Imperial Pharmacy™ and TCM Physicians Clinic are dedicated to bring the best of Traditional Chinese Medicine and new discoveries in herbal remedies for the health benefit of humankind.

Published Articles Relating to the Effects of Artemisinin and its Analogs on Cancer Cells:

  1. Tu Y (2011) The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat Med 17(10):1217–1220 
    Cancer   PubMed     CrossRef              

  1. Lai H, Singh NP (1995) Selective cancer cell cytotoxicity from exposure to dihydroartemisinin and holotransferrin. Cancer Lett 91:41–46   PubMed  CrossRef  Google Scholar

  1. Singh NP, Lai H (2001) Selective toxicity of dihydroartemisinin and holotransferrin toward human breast cancer cells. Life Sci 70:49–56 
    PubMed  CrossRef  
    Google Scholar

  1. Efferth T, Dunstan H, Sauerbrey A, Miyachi H, Chitambar CR (2001) The anti-malarial artesunate is also active against cancer. Int J Oncol 18:767–773  
    PubMed    Google Scholar

  1. Singh NP, Lai H (2004) Artemisinin Induces Apoptosis in Human Cancer Cells. Anticancer Res 24:2277–2280
    PubMed       Google Scholar

  1. Das AK (2015) Anticancer effect of antimalarial artemisinin compounds. Ann Med Health Sci Res 5(2):93–102. doi:10.4103/2141-9248.153609
     
    PubMed    PubMedCentral   CrossRef  Google Scholar

  1. Crespo-Ortiz MP, Wei MQ (2012) Antitumor activity of artemisinin and its derivatives: from a well-known antimalarial agent to a potential anticancer drug. J Biomed Biotechnol. doi:10.1155/2012/247597
    PubMed      
    Google Scholar

  1. Krishna S, Ganapathi S, Ster IC, Saeed MEM, Cowand M, Finlayson C et al (2015) A randomised, double blind, placebo-controlled pilot study of oral artesunate therapy for colorectal cancer. EBioMedicine 2:82–90
    PubMed      CrossRef      
    Google Scholar

  1. Deliu IC, Ciurea P, Neagoe D, Bezna MC, Gheonea IA et al (2015) Evaluation of angiogenesis in colorectal cancer. Curr Health Sci J 41(2):145–151     Google Scholar

  1. Jansen FH, Adoubi I, J C KC, DE Cnodder T, Jansen N, Tschulakow A, Efferth T (2011) First study of oral Artenimol-R in advanced cervical cancer: clinical benefit, tolerability and tumor markers. Anticancer Res 31(12):4417–4422
    PubMed       Google Scholar

  1. Zhang ZY, Yu SQ, Miao LY, Huang XY, Zhang XP, Zhu YP et al (2008) Artesunate combined with vinorelbine plus cisplatin in treatment of advanced non-small cell lung cancer: A randomized controlled trial. J Chin Integr Med 6(2):134–138  
    CrossRef          Google Scholar

  1. Ericsson T, Blank A, von Hagens C, Ashton M, Äbelö A (2014) Population pharmacokinetics of artesunate and dihydroartemisinin during long-term oral administration of artesunate to patients with metastatic breast cancer. Eur J Clin Pharmacol 70(12):1453–1463. doi:10.1007/s00228-014-1754-2         
    PubMed      
    CrossRef     Google Scholar

  1. Genovese RF, Newman DB, Brewer TG (2000) Behavioral and neural toxicity of the artemisinin antimalarial, arteether, but not artesunate and artelinate, in rats. Pharmacol Biochem Behav 67(1):37–44
    PubMed      CrossRef          
    Google Scholar

  1. König M, von Hagens C, Hoth S, Baumann I, Walter-Sack I, Edler L et al (2016) Investigation of ototoxicity of artesunate as add-on therapy in patients with metastatic or locally advanced breast cancer: new audiological results from a prospective, open, uncontrolled, monocentric phase I study. Cancer Chemother Pharmacol 77(2):413–427. doi:10.1007/s00280-016-2960-7
    PubMed         
    CrossRef        Google Scholar

  1. Michaelsen F-WS, Saeed MM, Schwarzkopf J, Efferth T (2015) Activity of Artemisia annuaand artemisinin derivatives in prostate carcinoma. Phytomedicine 22:1223–1231
    PubMed       CrossRef       
    Google Scholar

  1. Singh NP, Verma KB (2002) Case report of a laryngeal squamous cell carcinoma treated with artesunate. Arch. Oncol 10(4):279–280
    Google Scholar

  1. Singh NP, Panwar VK (2006) Case Report of a Pituitary Macroadenoma Treated With Artemether. Integr Cancer Ther 5(4):391–394
    PubMed         CrossRef     
    Google Scholar

  1. Rowen RJ (2002) Artemisinin: from Malaria to cancer treatment. Townsend Letter for Doctors & Patients pp 86–88

  1. Berger TG, Dieckmann D, Efferth T, Schultz ES, Funk JO, Baur A et al (2005) Artesunate in the treatment of metastatic uveal melanoma–first experiences. Oncol Rep 14(6):1599–1603PubMedGoogle Scholar

  1. Uhl M, Schwab S, Efferth T (2016) Fatal liver and bone marrow toxicity by combination treatment of dichloroacetate and artesunate in a glioblastoma multiforme patient: case report and review of the literature. Front Oncol 6:204–209. doi:10.3389/fonc.2016.00204      
    PubMed   
    PubMedCentral   CrossRef    Google Scholar

  1. Reungpatthanaphong P, Mankhetkorn S (2002) Modulation of multidrug resistance by artemisinin, artesunate and dihydroartemisinin in K562/adr and GLC4/adr resistant cell lines. Biol Pharm Bull 25(12):1555–1561   
    PubMed      CrossRef     
    Google Scholar

  1. Efferth T, Giaisi M, Merling A, Krammer PH, Li-Weber M et al (2007) Artesunate induces ROS-mediated apoptosis in doxorubicin-resistant T leukemia cells. PLoS One 2(8):e693. doi:10.1371/journal.pone.0000693
    PubMed   
    PubMedCentral      CrossRef     Google Scholar

  1. Wu G-S, Lu J-J, Guo J-J, Huang M-Q, Gan L, Chen X-P et al (2013) Synergistic anti-cancer activity of the combination of dihydroartemisinin and doxorubicin in breast cancer cells. Pharmacol Rep 65:453–459
    PubMed       CrossRef        
    Google Scholar

  1. Eckstein-Ludwig U, Webb RJ, van Goethem IDA, East JM, Lee AG, Kimura M et al (2003) Artemisinins target the SERCA of Plasmodium falciparum. Nature 424:957–961
    PubMed       CrossRef    
    Google Scholar

  1. Riganti C, Doublier S, Viarisio D, Miraglia E, Pescarmona G, Ghigo D et al (2009) Artemisinin induces doxorubicin resistance in human colon cancer cells via calcium-dependent activation of HIF-1a and P-glycoprotein overexpression. Br J Pharmacol 156:1054–1066 
    PubMed     PubMedCentral     
    CrossRef     Google Scholar

  1. Lucibello M, Gambacurta A, Zonfrillo M, Pierimarchi P, Serafino A, Rasi G et al (2011) TCTP is a critical survival factor that protects cancer cells from oxidative stress-induced cell-death. Exp Cell Res 317:2479–2489
    PubMed      CrossRef     
    Google Scholar

  1. Lucibello M, Adanti S, Antelmi E, Dezi D, Ciafrè S, Carcangiu ML et al (2015) Phospho-TCTP as a therapeutic target of dihydroartemisinin for aggressive breast cancer cells. Oncotarget 6(7):5275–5291
    PubMed     PubMedCentral     
    CrossRef     Google Scholar

  1. Wang SJ, Gao Y, Chen H, Kong R, Jiang HC, Pan SH et al (2010) Dihydroartemisinin inactivates NF-κB and potentiates the anti-tumor effect of gemcitabine on pancreatic cancer both In vitro and In vivo. Cancer Lett 293(1):99–108
    PubMed       CrossRef    
    Google Scholar

  1. Hou J, Wang D, Zhang R, Wang H (2008) Experimental therapy of hepatoma with artemisinin and its derivatives: In vitro and in vivo activity, chemosensitization, and mechanisms of action. Clin Cancer Res 14:5519–5530]
    PubMed        CrossRef       Google Scholar

  1. Zhao C, Gao W, Chen T (2014) Synergistic induction of apoptosis in A549 cells by dihydroartemisinin and gemcitabine. Apoptosis 19(4):668–681
    PubMed        CrossRef        
    Google Scholar

  1. Zhao C, Qin G, Gao W, Chen J, Liu H, Xi G et al (2014) Potent proapoptotic actions of dihydroartemisinin in gemcitabine-resistant A549 cells. Cell Signal 26(10):2223–2233. doi:10.1016/j.cellsig.2014.07.001
    PubMed      
    CrossRef      Google Scholar

  1. Gravett AM, Liu WM, Krishna S, Chan W-C, Haynes RK, Wilson NL et al (2010) In vitro study of the anti-cancer effects of artemisone alone or in combination with other chemotherapeutic agents. Cancer Chemother Pharmacol 67(3):569–577
    PubMed      CrossRef       
    Google Scholar

  1. van Huijsduijnen RH, Guy RK, Chibale K, Haynes RK, Peitz I, Kelter G et al (2013) Anticancer Properties of Distinct Antimalarial Drug Classes. PLoS One 8(12):e82962. doi:10.1371/journal.pone.0082962
    CrossRef
          
    Google Scholar

  1. Tan X, Chen YI, Chin B, Bieber M, Teng N et al (2014) Artemisinin derivatives synergize with paclitaxel by targeting foxm1 through raf/mek/mapk signaling pathway in ovarian cancer. Abstract 0258, 15th Biennial Meeting of the International Gynecologic Cancer Society, 8–11 November 2014, Australia

  1. Ma RY, Tong TH, Cheung AM, Tsang AC, Leung WY et al (2005) Raf/MEK/MAPK signaling stimulates the nuclear translocation and transactivating activity of FOXM1c. J Cell Sci 118(Pt 4):795–806
    PubMed        CrossRef      
    Google Scholar

  1. Weaver BA (2014) How Taxol/paclitaxel kills cancer cells. Mol Biol Cell 25(18):2677–2681. doi:10.1091/mbc.E14-04-0916
    PubMed     
    PubMedCentral      CrossRef     Google Scholar

  1. Wu M-X (2016) Effect of artemisinin combined with cisplatin intervention on epithelial-mesenchymal transition, angiogenesis and ATP generation in MGC-803 gastric cancer cell lines. J Hainan Med Univer 22(18) (Abstract only available, article in Chinese)

  1. Wang B, Hou D, Liu Q, Wu T, Guo H, Zhang X et al (2015) Artesunate sensitizes ovarian cancer cells to cisplatin by downregulating RAD51. Cancer Biol Ther 16(10):1548–1556. doi:10.1080/15384047.2015.1071738
    PubMed      
    CrossRef         Google Scholar

  1. Feng X, Li L, Jiang H, Jiang K, Jin Y et al (2014) Dihydroartemisinin potentiates the anticancer effect of cisplatin via mTOR inhibition in cisplatin-resistant ovarian cancer cells: Involvement of apoptosis and autophagy. Biochem Biophys Res Commun 444(3):376–381. doi:10.1016/j.bbrc.2014.01.053
    PubMed         
    CrossRef        Google Scholar

  1. Chen H-H, Zhou H-J, Wang W-Q, Wu G-D (2004) Antimalarial dihydroartemisinin also inhibits angiogenesis. Cancer Chemother Pharmacol 53:423–432
    PubMed       CrossRef      
    Google Scholar

  1. Zhou HJ, Zhang JL, Li A, Wang Z, Lou XE (2010) Dihydroartemisinin improves the efficiency of chemotherapeutics in lung carcinomas In vivo and inhibits murine Lewis lung carcinoma cell line growth In vitro. Cancer Chemother Pharmacol 66(1):21–29
    PubMed        CrossRef        
    Google Scholar

  1. O’Neill PM, Barton VE, Ward SA (2010) The Molecular Mechanism of Action of Artemisinin—the Debate Continues. Molecules 15:1705–1721. doi:10.3390/molecules15031705
    PubMed        
    CrossRef        Google Scholar

  1. Efferth T (2015) Artemisinin–second career as anticancer drug? World J Tradit Chin Med 1(4):2–25CrossRefGoogle Scholar

  1. Xie Y, Hou W, Song X, Yu Y, Huang J, Sun X et al (2016) Ferroptosis: process and function. Cell Death Differ 23:369–379PubMedCrossRefGoogle Scholar

  1. Li Q, Weina P, Hickman M (2013) The use of artemisinin compounds as angiogenesis inhibitors to treat cancer, Chap. 7, 10.5772/54109

  1. Dong F, Tian H, Yan S, Li L, Dong X et al (2015) Dihydroartemisinin inhibits endothelial cell proliferation through the suppression of the ERK signaling pathway. Int J Mol Med 35(5):1381–1387. doi:10.3892/ijmm.2015.2140
    PubMed         
    Google Scholar

  1. Zhou Y, Li W, Xiao Y (2016) Profiling of Multiple Targets of Artemisinin Activated by Hemin in Cancer Cell Proteome. ACS Chem Biol. doi:10.1021/acschembio.5b01043 
    Google Scholar

  1. Tran KQ, Tin AS, Firestone GL (2014) Artemisinin triggers a G1 cell cycle arrest of human Ishikawa endometrial cancer cells and inhibits cyclin-dependent kinase-4 promoter activity and expression by disrupting nuclear factor-κB transcriptional signaling. Anticancer Drugs 25(3):270–281. doi:10.1097/CAD.0000000000000054PubMed
    PubMedCentral      CrossRef       Google Scholar

  1. Tin AS, Sundar SN, Tran KQ, Park AH, Poindexter KM, Firestone GL (2012) Antiproliferative effects of artemisinin on human breast cancer cells requires the downregulated expression of the E2F1 transcription factor and loss of E2F1-target cell cycle genes. Anticancer Drugs 23(4):370–379. doi:10.1097/CAD.0b013e32834f6ea8
    PubMed      
    CrossRef     Google Scholar

  1. Willoughby JA Sr, Sundar SN, Cheung M, Tin AS, Mondiano J, Firestone GL (2009) Artemisinin blocks prostate cancer growth and cell cycle progression by disrupting Sp1 interactions with the Cyclin-dependent Kinase-4 (CDK4) promoter and inhibiting CDK4 gene expression. J Biol Chem 284(4):2203–2213. doi:10.1074/jbc.M804491200
    PubMed        PubMedCentral      CrossRef     Google Scholar

  1. Zhao Y, Jiang W, Li B, Yao Q, Dong J, Cen Y et al (2011) Artesunate enhances radiosensitivity of human non-small cell lung cancer A549 cells via increasing NO production to induce cell cycle arrest at G2/M phase. Int Immunopharmacol 11(12):2039–2046. doi:10.1016/j.intimp.2011.08.017 
    PubMed       
    CrossRef       Google Scholar

  1. Chen K, Shou LM, Lin F, Duan WM, Wu MY, Xie X et al (2014) Artesunate induces G2/M cell cycle arrest through autophagy induction in breast cancer cells. Anticancer Drugs 25(6):652–662. doi:10.1097/CAD.0000000000000089
    PubMed       
    Google Scholar

  1. Jiang Z, Chai J, Chuang HH, Li S, Wang T, Cheng Y et al (2012) Artesunate induces G0/G1 cell cycle arrest and iron-mediated mitochondrial apoptosis in A431 human epidermoid carcinoma cells. Anticancer Drugs 23(6):606–613. doi:10.1097/CAD.0b013e328350e8ac
    PubMed         
    CrossRef      Google Scholar

  1. Huang Z, Huang X, Jiang D, Zhang Y, Huang B, Luo G (2016) Dihydroartemisinin inhibits cell proliferation by induced G1 arrest and apoptosis in human nasopharyngealcarcinoma cells. J Can Res Ther 12(1):244–247
    CrossRef       Google Scholar

  1. Sun H, Meng X, Han J, Zhang Z, Wang B et al (2013) Anti-cancer activity of DHA on gastric cancer–an in vitro and in vivo study. Tumour Biol 34(6):3791–3800. doi:10.1007/s13277-013-0963-0
    PubMed       
    CrossRef        Google Scholar

  1. Chen H, Sun B, Wang S, Pan S, Gao Y, Bai X et al (2010) Growth inhibitory effects of dihydroartemisinin on pancreatic cancer cells: involvement of cell cycle arrest and inactivation of nuclear factor-κB. J Cancer Res Clin Oncol 136(6):897–903
    PubMed         CrossRef       
    Google Scholar

  1. D’Alessandro S, Basilico N, Corbett Y, Scaccabarozzi D, Omodeo-Salè F et al (2011) Hypoxia modulates the effect of dihydroartemisinin on endothelial cells. Biochem Pharmacol 82(5):476–484. doi:10.1016/j.bcp.2011.06.002
    PubMed       
    CrossRef       Google Scholar

  1. Wartenberg M, Wolf S, Budde P, Grünheck F, Acker H, Hescheler J et al (2003) The Antimalaria Agent Artemisinin Exerts Antiangiogenic Effects in Mouse Embryonic Stem Cell-Derived Embryoid Bodies. Lab Invest 83(11):1647–1655
    PubMed           CrossRef        
    Google Scholar

  1. Jia J, Qin Y, Zhang L, Guo C, Wang Y et al (2016) Artemisinin inhibits gallbladder cancer cell lines through triggering cell cycle arrest and apoptosis. Mol Med Rep 13(5):4461–4468. doi:10.3892/mmr.2016.5073
    PubMed       
    Google Scholar

  1. Tong Y, Liu Y, Zheng H, Zheng L, Liu W et al (2016) Artemisinin and its derivatives can significantly inhibit lung tumorigenesis and tumor metastasis through Wnt/β-catenin signaling. Oncotarget 7(21):31413–31428
    PubMed         PubMedCentral      
    Google Scholar

  1. Eling N, Lukas R, Hazin J, Hamacher-Brady A, Brady NR (2015) Identification of artesunate as a specific activator of ferroptosis in pancreatic cancer cells. Oncoscience 2:517–532
    PubMed        PubMedCentral     
    CrossRef     Google Scholar

  1. Button RW, Lin F, Ercolano E, Vincent JH, Hu B, Hanemann CO et al (2014) Artesunate induces necrotic cell death in schwannoma cells. Cell Death Dis 5:e1466. doi:10.1038/cddis.2014.434
    PubMed      
    PubMedCentral      CrossRef     Google Scholar

  1. Hamacher-Brady A, Stein HA, Turschner S, Toegel I, Mora R, Jennewein N et al (2011) Artesunate activates mitochondrial apoptosis in breast cancer cells via iron catalyzed lysosomal reactive oxygen species production. J Biol Chem 286(8):6587–6601
    PubMed     CrossRef      
    Google Scholar

  1. Steinbrück L, Pereira G, Efferth T (2010) Effects of artesunate on cytokinesis and G2/M cell cycle progression of tumour cells and budding yeast. Cancer Genom Proteom 7(6):337–346
    Google Scholar

  1. Jeong DE, Song HJ, Lim S, Jeong Lee S, Lim JE et al (2015) Repurposing the anti-malarial drug artesunate as a novel therapeutic agent for metastatic renal cell carcinoma due to its attenuation of tumor growth, metastasis, and angiogenesis. Oncotarget 6(32):33046–33064
    PubMed       PubMedCentral      
    Google Scholar

  1. Greenshields AL, Shepherd TG, Hoskin DW (2016) Contribution of reactive oxygen species to ovarian cancer cell growth arrest and killing by the anti-malarial drug artesunate. Mol Carcinog. doi:10.1002/mc.22474
    PubMed      Google Scholar

  1. Jiao Y, Ge C-M, Meng Q-H, Cao J-P, Tong J, Fan S-J (2007) Dihydroartemisinin is an inhibitor of ovarian cancer cell growth. Acta Pharmacol Sin 28(7):1045–1056
    PubMed         CrossRef     
    Google Scholar

  1. Wang Z, Hu W, Zhang J-L, Wu X-H, Zhou H-J (2012) Dihydroartemisinin induces autophagy and inhibits the growth of iron-loaded human myeloid leukemia K562 cells via ROS toxicity. FEBS Open Bio 2:103–112. doi:10.1016/j.fob.2012.05.002
    PubMed    PubMedCentral     CrossRef      Google Scholar

  1. Du XX, Li YJ, Wu CL, Zhou JH, Han Y et al (2013) Initiation of apoptosis, cell cycle arrest and autophagy of esophageal cancer cells by dihydroartemisinin. Biomed Pharmacother 67(5):417–424. doi:10.1016/j.biopha.2013.01.013
    PubMed       
    CrossRef       Google Scholar

  1. Lin R, Zhang Z, Chen L, Zhou Y, Zou P et al (2016) Dihydroartemisinin (DHA) induces ferroptosis and causes cell cycle arrest in head and neck carcinoma cells. Cancer Lett 381(1):165–175. doi:10.1016/j.canlet.2016.07.033
    PubMed     
    Cross     RefGoogle Scholar

  1. Hui HY, Wu N, Wu M, Liu Y, Xiao SX et al Zhang MF (2016) Dihydroartemisinin suppresses growth of squamous cell carcinoma A431 cells by targeting the Wnt/β-catenin pathway. Anticancer Drugs 27(2):99–105. doi:10.1097/CAD.0000000000000307

  1. Kim SH, Kang SH, Kang BS (2016) Therapeutic effects of dihydroartemisinin and transferrin against glioblastoma. Nutr Res Pract 10(4):393–397
    PubMed        PubMedCentral       
    CrossRef      Google Scholar

  1. Yang N-D, Tan S-H, Ng S, Shi Y, Zhou J et al (2014) Artesunate Induces Cell Death in Human Cancer Cells via Enhancing Lysosomal Function and Lysosomal Degradation of Ferritin. J Biol Chem 289(48):33425–33441. doi:10.1074/jbc.M114.564567
    PubMed      
    PubMedCentral      CrossRef      Google Scholar

  1. Mercer AE, Copple IM, Maggs JL, O’Neill PM, Park BK (2011) The role of heme and the mitochondrion in the chemical and molecular mechanisms of mammalian cell death induced by the artemisinin antimalarials. J Biol Chem 286(2):987–996. doi:10.1074/jbc.M110.144188
    PubMed        
    CrossRef        Google Scholar

  1. Du, JH., Zhang, HD., Ma, ZJ., Ji, KM. (2010) Artesunate induces oncosis-like cell death In vitro and has antitumor activity against pancreatic cancer xenografts In vivo. Cancer Chemother Pharma 65:895–902
    CrossRef         Google Scholar

  1. Liou G-Y, Storz P (2010) Reactive oxygen species in cancer. Free Radic Res 44(5). doi:10.3109/10715761003667554

  1. Schieber M, Chandel NS (2014) ROS Function in Redox Signaling and Oxidative Stress. Curr Biol 24:R453–R462. doi:10.1016/j.cub.2014.03.034
    PubMed       
    PubMedCentral      CrossRef    Google Scholar

  1. Poillet-Perez L, Despouy G, Delage-Mourroux R, Boyer-Guittaut M (2015) Interplay between ROS and autophagy in cancer cells, from tumor initiation to cancer therapy. Redox Biol 4:184–192
    PubMed       CrossRef      
    Google Scholar

  1. Firestone GL, Sundar SN (2009) Anticancer activities of artemisinin and its bioactive derivatives. Expert Rev Mol Med 11:e32. doi:10.1017/S1462399409001239
    PubMed        
    CrossRef      Google Scholar

  1. Huang C, Ba Q, Yue Q, Li J, Li J, Chu R, Wang H (2013) Artemisinin rewires the protein interaction network in cancer cells: network analysis, pathway identification, and target prediction. Mol BioSyst 9:3091–3100. doi:10.1039/C3MB70342H
    PubMed     
    CrossRef      Google Scholar

  1. He Q, Shi J, Shen XL, An J, Sun H, Wang L et al (2010) Dihydroartemisinin upregulates death receptor 5 expression and cooperates with TRAIL to induce apoptosis in human prostate cancer cells. Cancer Biol Ther 9(10):819–824
    PubMed       CrossRef      
    Google Scholar

  1. Konkimalla VB, Blunder M, Korn B, Soomro SA, Jansen H, Chang W et al (2008) Effect of artemisinins and other endoperoxides on nitric oxide-related signaling pathway in RAW 264.7 mouse macrophage cells. Nitric Oxide 19(2):184–191. doi:10.1016/j.niox.2008.04.008
    PubMed       
    PubMedCentral       CrossRef       Google Scholar

  1. Lai HC, Singh NP, Sasaki T (2013) Development of artemisinin compounds for cancer treatment. Invest New Drugs 31(1):230–246. doi:10.1007/s10637-012-9873-z
    PubMed         
    CrossRef       Google Scholar

  1. Lai H, Nakase I, Lacoste E, Singh NP, Sasaki T (2009) Artemisinin-transferrin conjugate retards growth of breast tumors in the rat. Anticancer Res 29:3807–3810
    PubMed      Google Scholar

  1. Bhadra D, Bhadra S, Jain NK (2005) Pegylated lysine based copolymeric dendritic micelles for solubilization and delivery of artemether. J Pharm Pharmaceut Sci 8(3):467–482
    Google Scholar

  1. Chen Y, Lin X, Park H, Greever R (2009) Study of artemisinin nanocapsules as anticancer drug delivery systems. Nanomedicine 5(3):316–322. doi:10.1016/j.nano.2008.12.005
    PubMed         
    Google Scholar

  1. Letchmanan K, Shen S-C, Kiong Ng W, Tan RBH (2015) Enhanced dissolution and stability of artemisinin by nano-confinement in ordered mesoporous SBA-15 particles. Microencapsul 32(4):390–400. doi:10.3109/02652048.2015.1035684
    CrossRef
            
    Google Scholar

  1. Dai L, Wang L, Deng L, Liu J, Lei J, Li D, He J (2014) Novel multiarm polyethylene glycol-dihydroartemisinin conjugates enhancing therapeutic efficacy in non-small-cell lung Cancer. Sci Rep 4:5871. doi:10.1038/srep05871
    PubMed      
    Google Scholar

  1. Lu W-F, Chen S-F, Wen Z-Y, Li Q, Chen J-H (2012) In vitro evaluation of efficacy of dihydroartemisinin-loaded methoxy poly(ethylene glycol)/poly(L-lactic acid) amphiphilic block copolymeric micelles. J Appl Polym Sci. doi:10.1002/APP.38518
    Google Scholar

  1. Righeschi C, Coronnello M, Mastrantoni A, Isacchi B, Bergonzi MC et al (2014) Strategy to provide a useful solution to effective delivery of dihydroartemisinin: Development, characterization and in vitro studies of liposomal formulations. Colloids Surf B Biointerfaces 116:121–127
    PubMed      CrossRef     
    Google Scholar

  1. Dadgar N, Esfahani MKM, Torabi S, Alavi SE, Akbarzadeh A (2013) Effects of nanoliposomal and pegylated nanoliposomal artemisinin in treatment of breast cancer. Ind J Clin Biochem. doi:10.1007/s12291-013-0389-x
    Google Scholar

  1. Sun Q, Teong B, Chen I-F, Chang SJ, Gao J, Kuo S-M (2014) Enhanced apoptotic effects of dihydroartemisinin-aggregated gelatin and hyaluronan nanoparticles on human lung cancer cells. J Biomed Mater Res Part B 102B:455–462
    CrossRef      Google Scholar

  1. Wang Z, Yu Y, Ma J, Zhang H, Zhang H, Wang X et al (2012) LyP-1 modification to enhance delivery of artemisinin or fluorescent probe loaded polymeric micelles to highly metastatic tumor and its lymphatics. Mol Pharm 9:2646–2657. doi:10.1021/mp3002107
    PubMed        
    CrossRef      Google Scholar

  1. Dwivedi A, Mazumder A, du Plessis L, du Preez JL, Haynes RK, du Plessis J (2015) In vitro anti-cancer effects of artemisone nano-vesicular formulations on melanoma cells. Nanomedicine 11(8):2041–2050. doi:10.1016/j.nano.2015.07.010
    PubMed      
    Google Scholar

  1. Liu K, Dai L, Li C, Liu J, Wang L, Lei J (2016) Self-assembled targeted nanoparticles based on transferrin modified eight-arm-polyethylene glycol–dihydroartemisinin conjugate. Sci Rep 6:29461. doi:10.1038/srep29461
    PubMed         PubMedCentral      CrossRef      Google Scholar

  1. Fu J, Zhu Y (2017) Lysosomes activating chain reactions against cancer cells with a pH-switched prodrug/procatalyst co-delivery nanosystem. J Mater Chem B 7(5):996–1004. doi:10.1039/C6TB02820A  
    CrossRef       Google Scholar

  1. Ma W, Xu A, Ying J, Li B, Jin Y (2015) Biodegradable core–shell copolymer-phospholipid nanoparticles for combination chemotherapy: an in vitro study. J Biomed Nanotechnol 11:1193–1200
    PubMed           CrossRef        
    Google Scholar

  1. Li X-Y, Zhao Y, Sun M-G, Shi J-F, Ju R-J, Zhang C-X et al (2014) Multifunctional liposomes loaded with paclitaxel and artemether for treatment of invasive brain glioma. Biomaterials 35:5591–5604
    PubMed      CrossRef      
    Google Scholar

  1. Fröhlich T, Karagöz AC, Reiter C, Tsogoeva SB (2016) Artemisinin-derived dimers: potent antimalarial and anti-cancer   agents. J Med Chem. doi:10.1021/acs.jmedchem.5b01380
    Google Scholar

  1. Alagbala AA, McRiner AJ, Borstnik K, Labonte T, Chang W et al (2006) Biological mechanisms of action of novel C-10 non-acetal trioxane dimers in prostate cancer cell lines. J Med Chem 49:7836–7842
    PubMed       CrossRef       
    Google Scholar

  1. Stockwin LH, Han B, Yu SX, Hollingshead MG, Elsohly MA et al (2009) Artemisinin dimer anticancer activity correlates with heme-catalyzed reactive oxygen species generation and endoplasmic reticulum stress induction. Int J Cancer 125:1266–1275
    PubMed       PubMedCentral       
    CrossRef      Google Scholar

  1. Posner GH, McRiner AJ, Paik IH, Sur S, Borstnik K et al (2004) Anticancer and antimalarial efficacy and safety of artemisinin-derived trioxane dimers in rodents. J Med Chem 47:1299–1301
    PubMed         CrossRef      
    Google Scholar

  1. Lombard MC, N’Da DD, Breytenbach JC, Kolesnikova NI, Tran Van Ba C, Wein S, Norman J, Denti P, Vial H, Wiesner L (2012) Antimalarial and anticancer activities of artemisinin–quinoline hybrid-dimers and pharmacokinetic properties in mice. Eur J Pharm Sci 47:834–841
    PubMed        CrossRef       
    Google Scholar

  1. Singh NP, Lai HC, Park JS, Gerhardt TE, Kim BJ, Wang S, Sasaki T (2011) Effects of artemisinin dimers on rat breast cancer cells in vitro and in vivo. Anticancer Res 31:4111–4114
    PubMed            Google Scholar

  1. Fox JM, Moynihan JR, Mott BT, Mazzone JR, Anders NM et al (2016) Artemisinin-derived dimer ART-838 potently inhibited human acute leukemias, persisted in vivo, and synergized with antileukemic drugs. Oncotarget 7(6):7268–7279
    PubMed          PubMedCentral        
    Google Scholar

  1. Beekman AC, Barentsen ARW, Woerdenbag HJ, Van Uden W, Pras N, Konings AWT, El-Feraly FS, Galal AM, Wikstrom HV (1997) Stereochemistry-dependent cytotoxicity of some artemisinin derivatives. J Nat Prod 60:325–330
    PubMed      CrossRef      
    Google Scholar

  1. Posner GH, Paik I-H, Sur S, McRiner AJ, Borstnik K, Xie S, Shapiro TA (2003) Orally active, antimalarial, anticancer, artemisinin-derived trioxane dimers with high stability and efficacy. J Med Chem 46:1060–1065
    PubMed      CrossRef     
    Google Scholar

  1. Emens LA, Middleton G (2015) The interplay of immunotherapy and chemotherapy: harnessing potential synergies. Cancer Immunol Res 3(5):436–443. doi:10.1158/2326-6066.CIR-15-0064
    PubMed       
    PubMedCentral        CrossRef        Google Scholar

  1. Yao W, Wang F, Wang H (2016) Immunomodulation of artemisinin and its derivatives. Sci Bull. doi:10.1007/s11434-016-1105-z
    Google Scholar

  1. Coussens LM, Werb Z (2002) Inflammation and cancer. Nature 420(6917):860–867. doi:10.1038/nature01322
    PubMed     
    PubMedCentral        CrossRef       Google Scholar

  1. Wang X, Lin Y (2008) Tumor necrosis factor and cancer, buddies or foes? Acta Pharmacol Sin 29(11):1275–1288
    PubMed       PubMedCentral       
    CrossRef      Google Scholar

  1. Coffelt SB, Wellenstein MD, de Visser KE (2016) Neutrophils in cancer: neutral no more. Nat Rev Cancer 16:431–446
    PubMed       CrossRef       
    Google Scholar

  1. Hunt S, Yoshida M, Davis CEJ, Greenhill NS, Davis PF (2015) An extract of the medicinal plant Artemisia annua modulates production of inflammatory markers in activated neutrophils. J Inflamm Res 8:9–14
    PubMed      PubMedCentral      
    CrossRef      Google Scholar

  1. Williams CB, Yeh ES, Soloff AC (2016) Tumor-associated macrophages: unwitting accomplices in breast cancer malignancy. NPJ Breast Cancer 2:15025–15046. doi:10.1038/npjbcancer.2015.25
    PubMed     
    PubMedCentral     CrossRef    Google Scholar

  1. Li B, Zhang R, Li J et al (2008) Antimalarial artesunate protects sepsis model mice against heat-killed Escherichia coli challenge by decreasing TLR4, TLR9 mRNA expressions and transcription factor NF-kappa B activation. Int Immunopharmacol 8:379–389
    PubMed      CrossRef     
    Google Scholar

  1. Wang Y, Huang ZQ, Wang CQ et al (2011) Artemisinin inhibits extracellular matrix metalloproteinase inducer (EMMPRIN) and matrix metalloproteinase-9 expression via a protein kinase Cdelta/p38/extracellular signal-regulated kinase pathway in phorbol myristate acetate-induced THP-1 macrophages. Clin Exp Pharmacol Physiol 38:11–18
    PubMed       CrossRef     
    Google Scholar

  1. Yu WY, Kan WJ, Yu PX et al (2012) Anti-inflammatory effect and mechanism of artemisinin and dihydroartemisinin. China J Chin Mater Med 37:2618–2621. (in Chinese)
    Google Scholar

  1. Wu B, Hu K, Li S et al (2012) Dihydroartiminisin inhibits the growth and metastasis of epithelial ovarian cancer. Oncol Rep 27:101–108
    PubMed      Google Scholar

  1. Kitamura T, Qian B-Z, Pollard JW (2015) Immune cell promotion of metastasis. Nat Rev Immunol 15(2):73–86. doi:10.1038/nri3789
    PubMed     
    PubMedCentral       CrossRef      Google Scholar

     
  2. Ali K, Soond DR, Pineiro R, Hagemann T, Pearce W et al (2014) Inactivation of the PI3K p110δ breaks regulatory T cell-mediated immune tolerance to cancer. Nature 510(7505):407–411. doi:10.1038/nature13444
    PubMed      
    PubMedCentral       Google Scholar

  1. Sun XZ (1991) Experimental study on the immunosuppressive effects of qinghaosu and its derivative. Chin J Mod Dev Tradit Med 11:37–38 (in Chinese)
    Google Scholar

  1. Wang JX, Tang W, Shi LP, Wan J, Zhou R, Ni J et al (2007) Investigation of the immunosuppressive activity of artemether on T-cell activation and proliferation. Br J Pharmacol 150:652–661
    PubMed       PubMedCentral     
    CrossRef      Google Scholar

  1. Yang DM, Liew FY (1993) Effects of qinghaosu (artemisinin) and its derivatives on experimental cutaneous leishmaniasis. Parasitology 106(Pt 1):7–11
    PubMed       CrossRef     
    Google Scholar

  1. Oleinika K, Nibbs RJ, Graham GJ, Fraser AR (2012) Suppression, subversion and escape: the role of regulatory T cells in cancer progression. Clin Exp Immunol 171:36–45
    PubMed        CentralCrossRef        
    Google Scholar

  1. Langroudi L, Hassan ZM, Ebtekar M, Mahdavi M, Pakravan N, Noori S (2010) A comparison of low-dose cyclophosphamide treatment with artemisinin treatment in reducing the number of regulatory T cells in murine breast cancer model. Int Immunopharmacol 10:1055–1061
    PubMed       CrossRef     
    Google Scholar

  1. Zhang LX, Liu ZN, Ye J, Sha M, Qian H, Bu XH et al (2014) Artesunate exerts an antiimmunosuppressive effect on cervical cancer by inhibiting PGE2 production and Foxp3 expression. Cell Biol Int 38:639–646
    PubMed         CrossRef        
    Google Scholar

  1. Ramacher M, Umansky V, Efferth T (2009) Effect of artesunate on immune cells in ret-transgenic mouse melanoma model. Anti Cancer Drug 20:910–917
    CrossRef         Google Scholar

  1. Mohamadabadi MA, Hassan ZM, Hosseini AZ, Gholamzad M, Noori S, Mahdavi M et al (2013) Arteether exerts antitumor activity and reduces CD4 + CD25 + FOXP3 + T-reg cells in vivo. Iran J Immunol 10:139–149
    Google Scholar

  1. Noori S, Hassan ZM (2011) Dihydroartemisinin shift the immune response towards Th1, inhibit the tumor growth in vitro and in vivo. Cell Immunol 271:67–72 
    PubMed      CrossRef    Google Scholar

  1. Beekman AC, Barentsen AR, Woerdenbag HJ, et al: Stereochemistry-dependent cytotoxicity of some artemisinin derivatives. J Nat Prod 60:325-330, 1997.

  1. Beekman AC, Wierenga PK, Woerdenbag HJ, et al: Artemisinin-derived sesquiterpene lactones as potential antitumour compounds: cytotoxic action against bone marrow and tumour cells. Planta Med 64:615-619, 1998.

  1. Beekman AC, Woerdenbag HJ, Van Uden W, et al: Stability of artemisinin in aqueous environments: impact on its cytotoxic action to Ehrlich ascites tumour cells. J Pharm Pharmacol 49:1254-1258, 1997.

  1. Bhisutthibhan J, Philbert MA, Fujioka H, Aikawa M, Meshnick SR: The Plasmodium falciparum translationally controlled tumor protein: subcellular localization and calcium binding. Eur J Cell Biol 78:665-670, 1999.

  1. Chen HH, Zhou HJ, Fang X: Inhibition of human cancer cell line growth and human umbilical vein endothelial cell angiogenesis by artemisinin derivatives in vitro." Pharmacol Res 48: 231-236, 2003.

  1. Efferth T, Dunstan H, Sauerbrey A, et al: The anti-malarial artesunate is also active against cancer. Int J Oncol 18:767-773, 2001.

  1. Efferth T, Davey M, Olbrich A, et al.: Activity of drugs from traditional Chinese medicine toward sensitive and MDR1- or MDR1-overexpressing multidrug-resistant human CCRF-CEM leukemia cells. Blood Cells, Molecules, and Diseases 28:160-168, 2002.

  1. Efferth T, Olbrich A, Bauer R: mRNA expression profiles for the response of human tumor cell lines to the antimalarial drugs artesunate, arteether, and artemether. Biochem Pharmacol 64:617-623, 2002.

  1. Fishwick J, Edwards G, Ward SA, et al: Binding of dihydroartemisinin to differentiating neuroblastoma cells and rat cortical homogenate. Neurotoxicology 19:405-412, 1998.

  1. Fishwick J, Edwards G, Ward SA, et al: Morphological and immunocytochemical effects of dihydroartemisinin on differentiating NB2a neuroblastoma cells. Neurotoxicology 19:393-403, 1998.

  1. Hu YQ, Tan RX, Chu MY, et al: Apoptosis in human hepatoma cell line SMMC-7721 induced by water-soluble macromolecular components of Artemisia capillaris Thunberg. Jpn J Cancer Res 91:113-117, 2000.
  2. Lai H, Singh NP: Selective cancer cell cytotoxicity from exposure to dihydroartemisinin and holotransferrin. Cancer Lett 91:41-46, 1995.

  1. Lee CH, Hong H, Shin J, et al.: NMR studies on novel antitumor drug candidates, deoxoartemisinin and carboxypropyldeoxoartemisinin. Biochem Biophys Res Comm 274:359-369, 2000.

  1. Li Y, Shan F, Wu JM, et al: Novel antitumor artemisinin derivatives targeting G1 phase of the cell cycle. Bioorg Med Chem Lett 11:5-8, 2001.

  1. McLean WG, Ward SA: In vitro neurotoxicity of artemisinin derivatives. Med Trop (Mars) 58:28-31, 1998.

  1. Mukanganyama S, Widersten M, Naik YS, et al: Inhibition of glutathione S-transferases by antimalarial drugs possible implications for circumventing anticancer drug resistance. Int J Cancer 97:700-705, 2002.

  1. Oh S, Jeong IH, Shin WS, Lee S: Growth inhibition activity of thioacetal artemisinin derivatives against human umbilical vein endothelial cells. Bioorg Med Chem Lett 3(21):3665-3668, 2003.

  1. Posner GH, Ploypradith P, Parker MH, et al: Antimalarial, antiproliferative, and antitumor activities of artemisinin-derived, chemically robust, trioxane dimers. J Med Chem 42:4275-4280, 1999.

  1. Reungpatthanapong P, Mankhetkorn S: Modulation of multidrug resistance by artemisinin, artesunate and dihydroartemisinin in K562/adr and GLC/adr resistant cell lines. Biol Pharm Bull 25:1555-1561, 2002.

  1. Sadava D, Phillips T, Lin C, et al: Transferrin overcomes drug resistance to artemisinin in human small-cell lung carcinoma cells. Cancer Lett 179:151-156, 2002.

  1. Shaikenov TE, Adekenov SM, Williams RM, et al: Arglabin-DMA, a plant derived sesquiterpene, inhibits farnesyltransferase. Oncol Rep 8:173-179, 2001.
     
  2. Singh NP, Verma KB: Case report of a laryngeal squamous cell carcinoma treated with artesunate. Arch Oncol 10:279-280, 2002
     
  3. Smith SL, Maggs JL, Edwards G, et al: The role of iron in neurotoxicity: a study of novel antimalarial drugs. Neurotoxicology 19:557-559, 1998.
     
  4. Sun WC, Han JX, Yang WY, et al: [Antitumor activities of 4 derivatives of artemisic acid and artemisinin B in vitro]. Zhongguo Yao Li Xue Bao 13:541-543, 1992.
     
  5. Woerdenbag HJ, Merfort I, Passreiter CM, et al: Cytotoxicity of flavonoids and sesquiterpene lactones from Arnica species against the GLC4 and the COLO 320 cell lines. Planta Med 60:434-437, 1994
     
  6. Woerdenbag HJ, Moskal TA, Pras N, et al: Cytotoxicity of artemisinin-related endoperoxides to Ehrlich ascites tumor cells. J Nat Prod 56:849-856, 1993.
     
  7. Wu JM, Shan F, Wu GS, et al: Synthesis and cytotoxicity of artemisinin derivatives containing cyanoarylmethyl group. Eur J Med Chem 36:469-479, 2001.
     
  8. Zheng GQ: Cytotoxic terpenoids and flavonoids from Artemisia annua. Planta Med 60:54-57, 1994.
     
  9. Artemisinin Pharmacology and Pharmacokinetics
     
  10. Dhingra V, Rao KV, Narasu NL: Current status of artemisinin and its derivatives as antimalarial drugs. Life Sci 66:279-300, 2000.
     
  11. Li Y, Wu YL: An over four millennium story behind qinghaosu (artemisinin--a fantastic antimalarial drug from a traditional chinese herb). Curr Med Chem 10(21):2197-2230, 2003.
     
  12. Navaratnam V, Mansor SM, Sit NW, et al: Pharmacokinetics of artemisinin-type compounds. Clin Pharmacokinet 39:255-270, 2000. 

Other links:

http://www.mwt.net/~drbrewer/canart2.htm   

http://www.townsendletter.com/Dec2002/artemisinin1202.htm


 Regreso 

    Site Mailing List 

     
    ONLINE INFORMATION ON CAM:
     

    The National Cancer Institute

    The U.S. National Library of Medicine 

    National Center for Complementary and Integrative Health

     Sloan Kettering Cancer Center, ABC of Herbal Medicine and CAM  

    World Health Organization Traditional, CAM and integrative medicine

    Journals & Pubs on Traditional Chinese Medicine and Integrated Medicine
      


    Terms of Use ⎜ Privacy Policy

    Information on this website is provided for informational purpose only and is no intended as a substitute for the advice provided by your health care provider. You should not use the information on this website for diagnosing or treating an illness or health condition, or prescribing any medication, herbal remedy, or other form of therapy. Any third party offering or advertising on this website does not constitute an endorsement by Dr. Marcelo Lam or TCM Physicians Clinic.

    It is highly recommended to seek advice from a licensed health care provider knowledgeable in the use of herbal medicine, before using any herbal product for health care.

    TCM Physicians Clinic Copyright © 1997 All Rights Reserved. Reproduction in whole or in part is prohibited.